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In this article it is shown that Winograd’s methods can be modified to compute
Fourier-like transforms over GF (2"), where n = 4,5,6,8. Such transforms are used to
encode and decode Reed-Solomon codes of block length 2-1. With these transforms a
Reed-Solomon decoder can be made faster and more efficient than a decoder that uses
the conventional fast transforms over GF(2" ).

l. Introduction

Fast transforms over the group (Z, )" were used first by Green (Ref. 1) of the Jet Propulsion Laboratory to decode the (32,6)
Reed-Muller code (Ref. 2) in the Manner and Viking space probes. In 1971, Mandelbaum (Ref. 3) proposed to decode Reed-
Solomon (RS) codes by a transform technique. Recently Gore (Ref. 4) extended Mandelbaum’s method to decode RS codes with
a finite field transform over GF(2"). Later, Michelson (Ref. 5) implemented Mandelbaum’s algorithm and showed that a trans-
form decoder over GF(2") requires fewer multiplications than a more standard decoder (Refs. 6 and 7). The disadvantage of the
transform method over GF(2") is that the transform length is an odd number, so that the most efficient FFT algorithm cannot
‘be used. Recently, the authors in (Ref. 8) showed that RS codes can be decoded with a combination of a fast transform and con-
tinued fractions. This approach was used to decode RS codes over GF(227) (Ref. 9), and over GF(32) and GF'(64) (Ref. 10);
Winograd’s techniques were used to reduce the number of multiplications. In this paper we extend the results of Refs. 9 and
10 by providing a simple inspection technique to further cut down the number of multiplications.

Present plans for the space communication link for the Voyager mission (Ref. 11) include a 16-error-correcting, 255-symbol
RS code, where each symbol has 8 bits. This RS code is concatenated with a Viterbi decoded convolutional code of constraint
length 7, rate 1/2 or 1/3. Such a concatenated coding scheme can be used to reduce the signal-to-noise ratio required to meet a
specified bit-error rate.
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In order to decode a given received vectorr =(ry,r ..., ry-,) of such an RS code of length N by a transform technique, one
first computes the syndromes (Ref. 8).

N-1 ~ N-1 . N-1
=0 i=0 i=0
fork=12,...,2t (1)

where

t = maximum number of errors that can be corrected

c= (co, o ,cN_1)= transmitted RS code word
e=(ey.€,,...,ey_,)=error pattern
and

ve GF(2") is a primitive Nth root of unity

The error locator polynomial is then determined from the syndromes and used to compute the remaining syndromes,

Ezz+1’ L Ey = Eo‘ The corrected RS code word is then ¢ = r - e, where e = (eo, € .eN_l), the error word is the inverse

transform of £, given by the relation:

N-1
e, =NV Y E v 1=01,... N-1 (2)
k=0

Observe that (1) as well as its inverse (2) are actually discrete Fourier-like transforms of the form:
N-1
Ai=2a‘.7",0<j<N—l,'yN=l (3)
i=0
Evidently, the computation of A. in (3) directly involves N? multiplications. By appropriate algebraic manipulations, it is

shown in this paper that this num{)er of multiplications can be reduced substantially.

Eq. (3) can be rewritten in matrix form as

00 01 O(N-1)
Ao Y Y 07 a,
Al 710 711 71(N—1) a,
420 y21 72(1v—1)
= . . . . (4)
(N-1)0 (N-1)1 (N-1)(N-1)
AN_1 Y 0% Y an_1)
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or in abbreviated notation as
A=Wi (5)
where W' is an N X N matrix (¥¥), and 4 and a are 1 X N column matrices (4,) and (a;), respectively. Also let

Al.=a0+B]. for j=12,...,N-1

where

or again in a short notation as
B=wa (6)

where W is the (W - 1) X (N - 1) matrix (y7 )ij 20 and 4, B are the column matrices (a,) and (B)), respectively. By factoring
matrix W into a product of matrices W = W, Wz' ... W,, Gentleman (Ref. 12) was able to reduce the number of multiplications
involved in this computation considerably.

In this paper, algorithms using the methods of Winograd (Refs. 13 and 14) are developed to compute the above transform over
GF(2") for n = 4,5,6,8. The idea behind this method is to first permute the entries of the matrix W into a cyclic block of sub-
matrices. Then, using some variations of the ideas of Winograd, the total number of multiplications required to perform the
transform are significantly reduced. Two cases need to be distinguished.

First, if N is a prime number p, then there exists ae GF(p), which generates the cyclic multiplicative group of p - 1 elements.
By applying the permutation ¢(i)=o/,i=1,2,...,p - 1, the matrix W can be changed into a cyclic matrix W as follows:

p-1 p-1
= U(i)a(j) = G(H'j) ] =
B, Z 25w Y Z O J=12,...,p

i=1 =1
or
B=Wa ©)
where W = (7°(i+i)) and where ¢ = (ao(i)) and B = (Bo(i)) are column matrices.

Secondly if NV is not a prime, then it can be factored into a product of relatively prime powers ¥ = NN, ... N,. Then by
suitably applying the above technique for each V,, the original B can be reconstituted by using the Chinese Remainder Theorem
and Winograd’s approach. The above proposed transform algorithm over GF'(2") generally requires fewer multiplications than the
more conventional fast transform algorithm proposed by Gentleman (Ref. 12).

In the next section, methods for multiplying two polynomials by the cyclic convolution techniques are developed. Three
examples, 3-, 5-, and 15-point cyclic convolutions, are provided to demonstrate the ideas involved. Section III contains technical
results for simplifying computations over GF(2"). These results along with those in Section II about cyclic convolutions over
GF(2") are used to obtain the finite field transforms of 7 and 9 points in Section IV. Transforms of length N =3, 5 and 17 points
are given in Appendix B. In Section V finite field transforms of longer lengths, viz, N = 2" - 1, where n = 4,5,6,8, are obtained,
using the results given in Section III. A comparison of the new algorithm and Gentleman’s algorithm is made in Section VI.
Finally a comparison of the two algorithms in terms of the complexity of transform decoding of Reed-Solomon codes over
GF(2™),n =4,5,6,8 is provided in the last section of the paper.
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Il. Cyclic Convolutions Over GF(2")

The computation of transforms over GF(2") will be based on fast cyclic convolutions. We first discuss a few techniques which
are useful in obtaining fast cyclic convolutions.

Consider the multiplication of two polynomials x(v) = x
GF(2"). The product

o Tx " and yu) =y, +y u” for m = 1,2 with coefficients in

x()pl) = (xg +x,u™) (v +y,u™)

_ m 2m
=X, 0ot o * X))y (X Fx )+ xgy, Ty e +xyu

- m 2m
-co+clu +02u (8)

where ¢) =x  * y ,c, = (xq +x1)(y0 ty)) tx, oy, tx cy, and ¢, =x, * y,. We see that only three multiplications
are needed to perform (8), whereas a direct method would require four.

n-1

Now if x(u) = x, + x,u + ... +xn_1u"_'and y(u) =y, tyut. ...ty u are two (n - 1)th degree polynomials,

then it is well known that the cyclic convolution T (u) of the coefficients of x(u) and y(u) is given by the coefficients of

T (1) = x(u) y() mod (u" - 1) 9)
The direct method for computing the above cyclic convolution T () requires n’> multiplications. This number of multiplications
can be reduced by the first factoring «” - 1 into distinct relatively prime factors
k
u" -1 =H m (u), when n is odd (10)
i=1
Next compute the residues T(u) of T'(u) as

T(wy=Tw)mod m(u),i=12,...,k an

Finally, T(u) can be reconstructed from the residues Ti(u) by the Chinese Remainder Theorem for polynomials (Ref. 15) as
follows:

Tu)= Tl(u)Ml(u)MII(u) +...+ Tk(u)Mk(u)M;1 (1) mod (u” - 1) (12)
where

M@)M (@) =1 mod mu) fori=1,... k (13)

Hence if the number of multiplications required to compute each Ti(u) can be reduced, the total number of multiplications
needed for T (u) can also be reduced.

As an example, consider the cyclic convolution of 3 elements given in matrix form as

Yo a4y 4 4 *o
o y=1e, 4, g x, 14)
Y2 4 4y 4 X
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When it is clear it is convenient to let [ ]€ represent the cyclic convolution of a matrix of the type shown in (14). Also.

let [ ]7 denote the transpose of a matrix. Then (14) can be rewritten as:
g ¥y0 2,17 = ag,a,,8,] € [xg, %, %, T (15)

The above convolution is obtained from the coefficients of

T(u)=(a, +agu +au®) + (x, +xu+xyu*)mod u® - | (16)

Evidently a direct approach to compute (16) requires 9 multiplications. This number can be reduced to less than half as shown
below.

To compute (16), factor u® - 1 =(u- D@? +u+1)=m Jwym,(w)y=m (M, (u)=m,(u)M,(u) where m (a)=u - 1 and
m,(u)= u? +u + 1. Here, the residues T (u) =T (u) mod m(u) are

T\(w)y=(a, ta, ta)(x, +x +x )mod (u-1)
and
= . 2
T,(u)= [(@, +a)+(a, +a)u] [(x2 + xo) +(x, + xo)u] mod (u” +u+1)
Using the relations in (8), T, () is given by

T,() = (@, +a,) * G, +xp) + (@, +a,) * (x, +x0) + [(@, +ap)

s, tx))t(a, ta) (x, +x,)} u mod W +u+l)

Evidently 3 multiplications are needed to compute T2(u). From the Chinese Remainder Theorem for polynomials (Ref. 15),
T (u) can be reconstructed from the residues T (u) and T, (u) by the relation

T(u) =T )M M () + T, ()M, )M, ) mod (u° - 1) (17)

where M; 1(u) uniquely satisfies the congruence Mu)M; Yw) =1 mod m [u) for i = 1,2. These equations are satisfied by
1(u) =1 and M, Y(u) = u. Hence, from (17),

Twy=y, tyu +y2u2 mod (u° - 1) (18)

where yo =m  +m +tm,,y =m +m, tm ,y,=m +m,+m andm =(a, ta, ta,) -.(x.2 +.x1 tx,),m, =(a, ta))"
(x, tx,),m,=(a, +a) (x, tx ), m,=(a, ta)" (x + x,). From (18), only four multiplications are needed to perform

(15).
Next, consider the cyclic convolution of 5 elements of GF(2™). Again such a convolution is represented in matrix form as
T _ C T
[yo,y1>y2,y3’y4] _[a()) 1,(12,(13,0 ] [ ()’x x x x4] (19)
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where [ 1T and [ ] € denote the transpose and the cyclic matrices, respectively, and Vpdp X € GF(2")fori=0,1,2,3,4. Again,
this matrix equation can be obtained from the coefficients of

(a, tayu +a1u2 +<12u3 +a3u4) ©(x, txu +x2u2 +xlu3 +x0u4) mod (u° - 1)
Since uS - 1= (u~- 1) (u* +ud +u? +u+1)=muym,u)=m )M, (u)=m,(u)M,u), where m (u)=u- 1 and m,(u) =
u* +u3 +u? +u+1,the system of congruences T(u) = T(u) mod m; (u) where i = 1,2 for this case is given by

T(W)y=(a, ta,ta +ta,+a) (x,+x;+x, +x

+x,) mod (u - 1) (20a)

2 3 1

and
T2(u) = [(a, + a3) + (ao taut(a t a3)u2 +(a, + a3)u3]
cx, txg) T xgt xo)u t(x, t xo)u2

2

+(x, +xo)u3] mod (u* +ud +u? +u+1) (20b)

In order to compute (20b), let ¢ = (a, tay),c, = (@, +a,)c, = (a, ta,),c;=(a, ta,),d,=(x, txg),d, = (x5 tx,),
d, = (x, +x,).d, =(x, +x, ). Then,

= 2 3 2 3
T,(u) = [y teuteu” +eu’] - [d, +dutdu” +dju ]
= [(e, +c1u)+uz(c2 tcyu)] - [(d, +du) +142(d2 +d,u)l
E[A0+Alu2] . [Bo+Blu2] mod (u® +ud +u? +u+1) (21)

where A, =cyteu, Ay =c, tcu,By=d,tduand B, =d, +d,u Now apply (8) at two levels, first to the expression
(4, t Aluz)(B0 + Bluz) and second to the expression of the form (4, + 4,) * (B, + B)) = (¢, +¢,) +(c, +c;)u] -
[d, +d,)+(d ¢+ d3)u], etc. By this means one can show that the set of coefficients of 7, (u) can be obtained with a total of
only 9 multiplications. Finally, by the Chinese Remainder Theorem for polynomials (Ref. 15), T'(u) is given by

T(u)=y,+yu+yu’+yu’+yu (22)

where

= + + +
Vo =mytm, tmytm, tm,tm

y, =m +m1+m9+m4+m5+m7,
y2=mo+ml+m9+m2+m5+m8,
y3—m0+m1+m6+m7+m2+m8+m9+m3+m4,
Vs m0+m1+m2+m3+m4+m5,
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and

m, =, ta, ta,ta ta,) . (x, tx,

1 Ty Ty tx, x5 ¥x,),

m, =4, tag) - (x, tx,), m, = (a, ta,) - (x, +x,);

my =(a, ta,) . (x, tx), m, = (a, +ay) - (x, +x0);

m=(a, tagta, va)) (x, tx;+x, +x);

mg =(a, +a,)" (x, +x,), m, =(a, tay) - (x, +x,);

mg = (a, ta):* (x, tx,), my= (a, +ay) - (x, +x,)
Hence, by (22), the total number of multiplications required to perform (19) is 10.

We next consider the problem of computing the cyclic convolution of two sequences of ! elements in GF (2") when lis not a
prime number. This requires a result of Winograd (Ref. 13).

Theorem 1: Let s and ¢ be relatively prime positive integers and 4 = (g, )be the cyclic s#Xst matrix (defined in Appendix A).
Then there exists a permutation 7 such that B = (@), n(jy) i partmoned into £xt submatrices, where each submatrix is cyclic
and the submatrices themselves form an sXs cyclic matrix. For a proof see Ref. 14.

Nowlet /=1 -1,...1 where (/,, l)— 1 for i #j. By repeated applications of Theorem 1, it is readily seen that if the number
of multlphcatlons used to compute the cyclic convolution of I, points is m, fori=1,2,...,r, then the number of multiplications

needed to compute an l-point cyclic convolution is equal to m, , m .

2 r

Consider as an example the cyclic convolution of length 15 over GF(2"). By Theorem 1, one can permute the rows and
columns of a 15X15 cyclic matrix in such a way that this matrix forms a 3X3 cyclic matrix with each matrix element being a
5X5 cyclic submatrix as follows:

T _ c T
(E,, EE,] " =[4,B,C1" [Y,, Y, Y,] (23)
where £y = (Vg Y6, V132 V3, Vs 1T B, = (1,0 Y Yyr Vy3e Yad Do By = e 2100 Y50 Y V00 T A= lag, 0,415,850,
B=|a 1O,a NN j = [a 11’”2"’ al4]C and Yl are the same as E, w1thy replaced byx By the same procedure

used to compute the cyclic convolutlon of 3 elements, defined in (15), (23) becomes
E =M, +M +M, E =My +M, +M,, E, =M +M, +M (24)

where My = (A+B+C)+ (Y, + Y, +Y,), M, =(C+A)+ (Y, +Y,),M,=(C+B)+ (Y, +Y), M, = (A +B) - (Y, + 7).

Clearly, (24) requires four (5X5) cyclic matrix multiplications. To find M, for i = 0,1,2,3, one needs to multiply matrices of
form (4 + B+ C),(C+A4),(C+B),and (4 +B) by vectors (Y, + Y, + Y,) (Yl +Y,) (Y, + Yo)’ and (Y + Yl), respec-
tively. Again, with the same procedure that was used to compute the cyclic convolutions of 5 elements given in (19), one finally
obtains the number of multiplications needed to perform M, for i = 0,1,2,3. Again each M, can be obtained using 10 multiplica- -
tions. Thus by (24) the total number of multiplications needed to compute the cyclic convolutlon of 15 elements in GF(2")
is 40,

Finally, consider the cyclic convolutions of two sequences, where the number of points is a power of 2. For example, con-
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sider the cyclic convolution of two 4-element sequences over GF (2"). Such a convolution can be represented in matrix form as
T . c T
(Vor Y1 ¥y ¥ = lag.a,.a,,a,]% Ixg. x . x,, x,] (25)
By Theorem 1 in Appendix A, (25) can be rewritten as

[v,.Y,17=[4.8]1° [x,,x,]7

where
_ T - T _ T _ T
Yo =ly,y 10 Y=yl ' X = xgex 17, X, =[x, x50 7,
4 4
A =
a; 4,
and
a, 4,
B:
a; 4,

According to (9), we have Y, =D +Eand Y, =D + F, where D=4 - (X + X,).E=(B-A4) - X,,and F=(B-A)* X ,s0
that three matrix multiplications are needed. Observe that D, £, and F are also 2-point transforms of the form

a b x blx, +x,)+(a+b)x,
= (26)
b ¢ x, bix, + x2) +(b+c) x,
With the above decomposition, one may compute D, E, and F, each with 3 multiplications. Thus, the total number of multiplica-
tions needed to perform the cyclic convolution of 4 elements is 9.

lll. The Computation of the Sum of Certain Elements of GF(2") by Inspection

Sometimes, it is possible to show a priori that certain sums of elements of GF (2") actually lie in the ground field GF'(2). That
is, if s is such a sum, than s = 0 or s = 1. Hence multiplication by s need not be counted when considering the multiplicative com-
plexity of an algorithm. This observation will be further studied in this section and utilized in the following sections. In this sec-
tion, necessary and sufficient conditions are developed to determine when seGF (2") also lies in GF(2). Moreover, if seGF (2), it
is shown how to evaluate it by inspecting a certain polynomial. This method will be used to simplify the complexity of the trans-
forms in the next section.

Theorem 2: Let aeGF (2")be a primitive (27 - 1)th root of unity. Let
B= 2

where /C {0,1,2,...,2" - 1}. Then BeGF (2) if and only if 27 = I, where the multiplication by 2 is taken mod (2" - 1).
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2
Proof: Letg= ). o Then52=(2 a") =) o

iel iel iel

Since 8eGF (2) iff B2 = B, it follows that BeGF (2) iff {2i liely=Tor2I=1.

Example: Let aeGF(23) be a primitive 7th root of 1. Then a + &2 + o* €GF (2) since the set I = {1,2,4} is closed under
multiplication by 2 (mod 7).

If BeGF (2") satisfies the hypothesis of Theorem 2, one can determine whether § = 0 or § = 1. This will be indicated in
Theorem 3. First, however, note that if 7= {0,1,...,2" - 1} has the property that 27 =/, then one can express [ = Il UIZU. ..
UI, , as a disjoint union of sets such that

() 20,=1 forj=1,... ,k

and

(i) L is minimal, i.e., ifII. o) 1/ and 21/., = 1].,, then either j = or 11., = @.

In order to determine if

B=Eai=00rl

iel

first reduce the problem to sets 11 satisfying (ii) as well as (i). Then by set union, one can determine the general case when / =

11U“‘U1k‘

Lemma: Suppose lIil = d}., where [Ijl denotes the number of elements in set 1] and suppose that 21}. = Ii’ then I] is minimal
if and only if

for any ioelj.‘

Proof: Suppose first that I; is denoted as above. Since 2/; = I;, it is clear that multiplication by 2 induces a cyclic permuta-
tion 7 on the elements i, 27y, ..., 24j-1 Iy, with nd!'(io) =1i,. Such a permutation is transitive;i.e., if a, b el;, then there exists
an integer 5, 0 <'s <d; such that 7°(a) = b. Thus it is clear that I; # [, UI, with [, NI, = ¢, 2I, = I;, and 21, = I,. Conversely,
suppose /; is minimal, and let i,e/;. Let s be the least positive integer such that 75(i) = i,. If s <d;, then {iy, 2iy, ..., 25 iy}
is a proper subset of /; closed under multiplication by 2. This contradicts the minimality of I;. Thus s = d;, hence

art |

(i0,2l'0,...,2’ iy ‘=1]

Theorem 3: Suppose BeGF(2") and
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where 2/, = 1; and [} is minimal. Suppose also that |/;|=d;. Then o0 where i, €1; satisfies some irreducible polynomial

d, d.-1
=5 / i
p(x)=x +adj_1x t... taxta,

where a, €GF'(2), and furthermore, § = g1

Proof: Let iodi' Since I] is minimal, it follows from the Lemma that

_‘. . d].—l.)
Ij—l10,210,...,2 i

Let

= M m-1
p(x)=x" +a X +...+aix+ao

be the minimal polynomial of a’0 over GF (2). Then p(e’) =0 for all idi' Consequently, m = deg p(x) = d/. and

di-l i2k
r@ = [1 (x-a° )

k=0

By comparing the coefficients of x%~! in p(x) it is readily seen that
p=a,_,
i

Example: Let aeGF(2™) satisfy x> +x* +1=0. Thena + a? +a® = 1, the coefficient of x2.

IV. A Modified Winograd’s Algorithm for Computing a Transform Over GF(2")
of N Points for N = 3,5,7,9,17

In the introduction it was shown that a discrete Fourier transform defined in (3) can be appropriately rewritten via (5) and (6)
in matrix form as shown in (7), namely, B = Wa where Wisan (V- 1) X (N - 1) cyclic matrix. In this section, these N-point
transforms are performed by the cyclic convolution approach described in Section II for ¥ = 3,5,7,9,17. These short-length trans-
forms are used in the next section to compute transforms of longer lengths of 2" - 1 points, where n = 4,5,6,8. Only the cases for
N =7 and 9 are given explicitly in this section. The cases for N = 3,5,17 are given more briefly in Appendix B.

Consider first the case N = 7. Let « be a primitive 7th root of unity in GF(2"). The transform over GF (2") is expressible as
7-1 ‘
A= 20 4" @7)
i=0

The permutation of ¢ for N = 7 is given by o(i) = 3' mod 7. Applying this permutation to (6) one obtains a 6X6 cyclic matrix
equation. By Theorem 1 there exists a permutation 7 of rows and columns so that the 6X6 cyclic matrix can be partitioned into
a 2X2 block matrix of 3X3 cyclic matrices. This is accomplished as follows:

(B,.B,.B,.B,,B,,B 1T =1V 7. v 7.7 v’1€ loy. a,.0,,a,,0,,017
or

[E,E,1T=[4,B]¢ [x,Xx,]T (28)
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where El = [B3’ BSyBélyEz = [B4’

22 Al AA1C po a5 6 31C v o= T y = T
BZ’BI]’A—[‘Y ’7 97] ’B_[7 ’7 57] 7X1—[a3’a5’a6] ’XZ—[a4’a2’al] .

Using the 2-point cyclic convolution for the matrices in (28) yields

where D= (X, +X,)+ A, E=(B- A)

Since A and B are cyclic matrices,

[E,E,)T=[D+ED+F]T
X, F=(B-4)-X,.

it is evident that the matrix B - A is also a cyclic matrix. Using the same procedure for

computing the 3-point cyclic convolution in (14) one can compute D, £, and F. Each of these quantities requires 4 multiplica-
tions. After some algebraic manipulations one finally arrives at the following expressions for the 7-point transform (27); namely,

4,

where
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=m0,Al—m0+ml+m2+m3+m4+m5+m6;

=mytm tm, tm, +tm, +tmg+mg

I
3
+
3

+m3+m7+m9+m10+mu;

(29)

I
3
-+
3

0 Pmgtmytm tmtmg;

It
3
-+
3

+m7+m2+m9+mll+m12;

1]
3
+
3

+
+m2+m3+m9+m12 mlO

=1-(a,*a, +a2+a3+a4+a5+a6);

Py ++ ) (o, ta, o ta, va ta);

= (2 4 1N )
=(Y +ty) (a5 ta, ta, ta,);

[}

(%) - (@ *a tag ta,),

=1-(ay ta, ta)

Py 7 %) (e tay)
=+ 7 %) - (g tay);

=ty (@ ta, tay ta,),

Il

O+ ) (g tay);

=1-(a, ta, +a);



10 () ! ! ! ) ' ( 1 2)’
mll - () by Y ty ) ’ ((11 (14),

m,=@+7 +7 +1%) - @, +a,)

Now factor x” - 1 into a product of irreducible polynomials over GF (2); i.e., xT-1=(x~- D3 +x+1)(x> +x2 +1). Let
I= {2,1,4}. Then 2/ = I. By Theorem 2, (v* + ' + ¥*) = 0 or 1. Observe that / is minimal and || = 3. Next choose v so that
satisfies x> + x2 + 1, then, by Theorem 3,9% +y! + 7% = 1. Thus m,,in (29) is equal to zero. Hence, from (29), one observes that
the number of multiplications needed to perform a 7-point transform over GF(2") is 9, excluding the multiplications by the unit
4% = 1. In what follows it will be necessary to consider a multiplication by the element v°. Hence, if one includes multiplications
by the unit v° = 1, the number of multiplications needed to perform the above transform is 12.

Next consider N, = 32, Let y be the 9th root of unity in GF(2"). The permutation of W as defined in (6) for a 9-point trans-
form over GF(2") is given as follows:

b2 ¥ 48 47 Syl 4% 43 40 a,
bs ¥ 47 45 4l 4% 4% 45 ¥ a
bs 77 7S ot 42 4t 48 43 40 a,
b7 Vv R ¥8 47 45 43 a,
= (30)
b, Yh a2 4% 4B 47 45 43 45 a,
b, IV DV VRV R 3 a,
b, Y3 A8 43S 43 48 11 a,
b, 76 43 45 Pyl a
The upper left 6X6 matrix of (30) is a cyclic matrix defined by
T _
[V, Y, Yo Y Y, Y 1T = v ' v v 0 21 C - ey a5.aq.0,,0,,0, 17 €2)
By a procedure similar to that used to compute the matrix defined in (28), one obtains
Y1 =m, tm, +m3 tm, +m, +m6, Y4 =m, +m7 tm, tm, +m8 tmg;
Yysm tmytm tmgtm+m Y, =m tmytm, +tm, tmgtmg
Yo=m tm, +mg+m, +m,, Y8=m1 tmy, tmytmg tm, s (32)

where

- 4 1 7N W } .

ml“'(')/ +’y +')‘) (az"a,,las a, ta +a1),
= 4 1 .

mz—-('y +'y)-(a5 +a|+a: +d7),
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m —(77+'y4)°(¢18+a1 tag +a,),
+7! +77+75+78+72)'(a2+a5 +ay);
+7° 47 1% - (g t )
72+t 490 - (g +ay);
m,= (" +v') (a5 +a

Ya, tay);

mg=(7 +7* +y +9%) - gy +a,);
my=( +y 47+ H% 4P @, ta, ta);
Mo = RSO K (@, +a,);
my =7+ %) (g +a);
my, =0+ 4y + ) (@ +ay).

If x° - 1 is factored into a product of irreducible polynomials over GF (2), one has x° - 1 = (x - )(x? +x + 1)
(x® +x3+ 1) Let I = (4,1,7,5,8 ,2). Then 21 = I. Observe that [ is mlmmal and II! 6. For this case choose vy so that 7
satisfies x® + x* + 1. Then, by Theorem 2 and Theorem 3 (v + 4! + 97 + 95 + 48 + v%) = 0 in (32). This implies m,
my =0 in (32). From (32), one observes that the number of multiplications needed to perform (31)is exactly 10.

The last two columns of the matrix defined in (30) can be obtained by the following 2X2 cyclic matrix

b X1 7= 1% 7% a3, 4] T = 2@, +a) + (P +9%)a,, ¥ (@, +a) + (P +4%)a,] T (33)

But y> + v = 1. Thus, (33) becomes

[xl,x2] T= [73(113 +a6) t1-ag 'y3(a3 +a6)+ 1- al]

Similarly, the last two rows of the matrix defined in (30) can be obtained by computing the following cyclic matrix
(2,,2,1T=1¥.7°1€ [a, +a, +a,.a, +a, +a,]7

5

= [¥’(q, ta,ta, ta, vag tag )+l (g, taytay),

73(a1+a4+a7+a2+a5+a8)+1-(a1+a4+a7)]T (34)
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Note that one multiplication is needed to compute (33). Similarly (34) requires only 1 multiplication. Thus, the algorithm for
computing the 9-point transform is

by=1-(a,+a ta,+a, ta, ta, va ta, +ay);

b =Y +X +1-a, b, =Y, +X, +1-a,b,=Z +1-(,+ta, tay);
b4=Y4+Xl+l~ao,b5=Y5+X2+l-ao,b6=Zl+1-(a1+a6+a0);

b,=Y +X +1-a,b =Y +X,+1-a, (35)

From (35), the total number of multiplications needed to perform a 9-point transform is 12, excluding multiplications by the
unit 1. Again, the algorithms for computing N-point transforms over GF (2") for N = 3,5,17 are given in Appendix B.

V. Transforms Over GF(2") of 2"—1 Points Where n = 4,5,6,8

ForN=N N, , where (V,, N;) = 1, it was shown by Winograd in Refs. 13 and 14 that the transform matrix W’ defined
in (5) can be transformed into the product of W W .. W;c where W' is the matrix of an N -point discrete Fourier- like
transform. Assume that m, multiplications are needed to perform an Ny pomt transform over GF(2") for 1 < i < k. Then,

mom, ...m, multiplications are needed to compute the N-point transform

Suppose N = 2% - 1 =3 X 5. Since the 15th roots of unity lie in GF (24), GF (24) is the appropriate domain for calculating
the transform of 15 points using the algorithm described in the last paragraph of the previous section. The Chinese Remainder
Theorem is used to represent each integer i(0 <i < 15) by the pair (i, ) ({ mod 3,imod 5). Further, let v , v,,and v, be
the 3rd, 5th and 15th roots of unity in GF (24) respectively. Then, the 15 pomt transform over GF (24) is

A= Z a ~7 (36a)

After representing i and j by i = (i;, {,)=(imod 3,imod 5) andj = (]l 7 ) (j mod 3, mod 5) respectively,

= i2j jl
A(jl,iz) Z E a(il,iz) 73 Z a, (1)71 (36b)

i, =0 i,=0 k—O

where g;, (7, ) is the 5-point transform over GF (2%) defined by

5
7, Uy) = E ”,,,ﬂz :

r =0
Expressing (36b) in matrix notation, we have
(ail (j2))= Y
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where

0.0.0.,.0.0
27,777, a(il,o)
0 3
Y2727 72 Y, S OBV
. 0.2 .4 .1.3 = = 37
W, LRFRPRIRET B .2 @7
0.3 .1 4.2
PR PRI IIP a(i1,3)
0.4 .3 .21
Y21, 7272 Y, a(i1,4)
Thus (36) becomes
_ L ig,
A = vl w G forj=0,1,2 (38)
]1 1 2 tl
i =0
or
A, w, W, W, a,
7 - ’ ’ ’ 2 -
Al = W, W Wom a,
7 1 ! 2 1 -—
4, W, W,mi W7 a,
where “io is in terms of 4, as:
7 - T . T
4, = [A(o 0)’ A(o 1)’ A(o 2)’ A(o 3y A(o 4)] = [4,, 4,45, A9] (39)
Srmllarly, . [Al oA A A4,5.4, 17,4 [A A A, A4, A, ] , and 50 through 52 are obtained from the expressions

for A through 4, on replacmg each A, by a Usmg the 3-pomt transform (B 1) in Appendix B and making the correspondence,
Y <—>W2,7 W LYY oW, 71,one obtains

A0=M0 ;A1=M0+M1+M2 ;A2=M0+M1+M3 (40)

where M, = W, (@, +a, +a,), M, = Wy, + D@, +a,), M, = W.,a,, M, = W,a, . Thus, Eq. (40) requires four matrix
multiplications.

Observe that all four matrix multiplications in (40) are S-point transforms of exactly the same form as (B-2) in Appendix B.
Thus one may compute M. forj = 0,1,2,3 in (40) with a procedure similar to that used to compute the matrix defined in (B-2).
The number of multiplications for computing an M; forj =0,1,2,3 in (40) is 5, excluding multiplication by 4°. Thus, the total
number of multiplications needed to compute a 15-point transform is 4 X 5 = 20.

Consider now a transform of N = 31 points. Let y be a 31st root of unity in GF (2%). Here the 31 X 31 matrix is of the form
given in (4) where N = 31. Now since N = 31 is prime, the permutation o is given by o(i) = 3*mod 31,i=12,3,...,30. Using
thrs permutation, one can permute the indices of B, @, W defined in (6) so that the matrix W = (7"(’)"(’)) £0 is cyclic for

=1,2,...,30. Next since V- 1 =30 =2 X 15, then, by Theorem 1, the 30 X 30 cyclic matrix W can be ﬁrst partitioned
into 15 X 15 submatrlces where each submatrix is a 2 X 2 cyclic matrix. By (26), only three matrix multiplications are needed to
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perform these 2 X 2 cyclic matrices. Also by (23), the number of multiplications needed to compute a 15 X 15 cyclic matrix is
40. Thus, the total number of multiplications needed to perform a 31-point transform is 3 X 40 = 120.

Next consider the finite field GF(26) Since N=26-1=63= N,*N, =7-9, by Winograd’s algorithm one needs to compute
an N-point transform over GF(2°) for N,=7and 9. It was shown in the previous section that the number of multiplications
needed to perform a 7-point transform over GF(26) is 12, including the multiplications by the unit v% =1, and that the number
of multiplications needed to perform a 9-point transform is 12, excluding multiplications by the unity 4% = 1. By the same proce-
dure used to compute a 15-point transform over GF(2%) in (36a), the total number of multiplications needed to perform a 63-
point transform over GF(2%)is 12 X 12 = 144,

Consider now the transform over GF (2%) of 255 pomts Since N=255=3-5-17=N +N,*N,, by Winograd’s algorithm
one needs to compute an N -point transform over GF (28 ) for N, =3,5,17. An N, transform over GF(28) forN 3,5and 17 is
computed in Appendix B. Wrth the procedure used to compute the 15-point transform over GF(2%) in (36a), the total number of
multiplications needed to perform a 255-point transform over GF (2%)is 4 X 10 X 57 = 2180 multiplications.

Vi. Comparison of New Algorithm With Gentleman’s Algorithm

IfN=2"-1 =N,*N, > Where (N N;)=1 for i #j, Gentleman showed (Refs. 5 and 12) that an N-point transform N
requires N(V, + N, + + N - k +1) multlphcatlons The present algorithm for computing the (2" - 1)-point transform for
n=456.8 and Gentleman s algonthm are compared in Table 1. The number of multiplications needed to perform these algo-
rithms is given in both cases. Evidently for n = 4,5,6,8 the new algorithm for computing the (2" - 1)-point transform requires
considerably fewer multiplications than Gentleman’s algorithm.

Vil. Transform Decoding of Reed-Solomon Codes

Let NV be the block length of an RS code over GF(2"). Also let d = 2¢ + 1 be the minimum distance of the code, where ¢ is
the number of allowable errors. It was shown in Ref. 5 that a finite field transform over GF (2") can be used to compute the
syndrome and error magnitudes. It follows from Refs. 15 and 16 that the number of multiplications required to perform the
syndrome and error magnitude calculations for the standard decoder is approximately (N - 1)(d - 1) + 12,

For a (2" - 1, d) RS code where d = 2¢ + 1, the number of multiplications needed to compute the syndrome and the error

magnitudes is given in Table 2 for n = 4,5,6,8. For comparison, the corresponding number of multiplications required by Gentle-
man’s algorithm and by the standard algorithm are also given in the table.
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Appendix A

Definition: An nXn matrix 4 = (a,-i) 0<i,j<n-1)iscyclicif a;=a where the indices are computed mod n.

i+1,j-1°

Theorem 1: Let A by any nXn cyclic matrix, and suppose n = a X b, where (2, b) # 1. Then A can be partitioned into a cyclic
aXa matrix whose entries are themselves bXb submatrices.

Proof: Omitted.
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Appendix B

This Appendix presents a brief summary of the transform algorithm of N points for ¥ = 3,5,17. For N = 3, let 7y be the 3rd
root of unity in GF (2") such that v satisfies the irreducible polynomial x? + x + 1. The transform over GF (2") is

2
A= 2 ay"* fork=0,12 (B-1)

n=0

Let m = 1- (aO ta +az), m, = (al ta,)- 'yl,m2 =(y? - 71)-(11 =1 °a1,andm3=(72— 71) ca, =1 -az.Thus,
A, =mg, A, =my+tm +m,, and A, =mg+m +m,. Hence, the total number of multiplications needed to perform the
above transform is 4, including multiplications by the unit 1.

Next consider the case N = 5. Let y be a 5th root of unity in GF(2") such that v satisfies the irreducible polynomial x*+
x3 +x2 +x + 1. The 5-point transform is

A, = a y"** fork=0,1234 (B-2)

Let A, = ~° (a,*+a, +ta,+ta ta, +a,), and also let o(i) = 2" mod 5. Equation (B-2) becomes
B=1(8,.B,.B,.B,1" =", 7. v, V1€ la,. 45,05, 0] 7 (B-3)

By a procedure similar to that used to compute the cyclic convolution of 4 elements of GF (2"} in (25), one may compute (B-3).
Thus, after some algebraic manipulations on (B-2) and (B-3) one arrives at the following expressions for the 5-point transform:

A0=m0,A1 —Sz+ms +m9,A2=S1 tm, tm;

A3=S1+m5+m8,A4=S2+m4+m7. (B-4)

=0 = (0 4 3 = -
where m = 7" « (g, +4al ta,ta, ta,),m —(;y +7’) (@, ta, ta, ta),m, =’ +v" - (@, tay),my=(r' +7°)
@, tam,=(vy+7v) " (q tay),mg=(y+7) - (a, ta),m,=1a,m =l-a;,m=1~a,m;=1+a,§ =m;+

49
= +
m otm,,S,=m +tm +m,.

If again one includes multiplications by the unit 1, it follows from the algorithm in (B-4) that the number of integer multipli-
cations needed to perform a 5-point transform is 10. If multiplications by 1 are excluded, only 5 multiplications are needed.

Now consider the case N = 17. The permutation ¢ is o(f) = 5 mod 17. Applying this permutation to (6) one obtains a 16X16
cyclic matrix. By Theorem 2, the cyclic matrix can be partitioned into blocks of 4X4 matrices so that the blocks form a 4X4
cyclic matrix. This has the form

(T,.T,.T,.T,17 = [4,B,C, DI [S,,S,,5,, 5,17 (B-5)
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T — T - T — T
whete T, [bg,bg, b b3) T T, = 16,4.0,.0,0.0, 1T Ty = [by,, b, by, b, 17T, = [by, bbb, 17.
ve, 8, ' P T
vo, 3, M, P Y10, 418, 12, 4°
A: , B=
713’ 714, 72’ 710 716, 712, 79’ ,Yll
Y4, ¥ 0, 4te Y2, 47, 'Yt
Y, oA, YR Y5, 47, A,
11 4 3 15 7 1 5 8
Yoyt ¥Ry Y, o Y,y
c= , D=
Yo, Y Yo 98 At
Y, 5,9, ! Y, 7t 8

and S, through §, are obtained from the expressions for T', through T, on replacing each b, bya,.

By a procedure similar to that used to compute the cyclic matrix of 4 elements in (25), we obtain

T.=V . +N,+N,, T =V_+N_+N
2 1 4 6 4 2 4 i (B-6)
T3=V1+N5+Ns’ T1=V2+N5+N9
where
N1 =B(S1 +52 +S3 +S4), N2 =(4+B)" (S2 +S3),
N3=(C+B).-(S1+S4), N4=(C+A)-(S3+S1),
(B-7)
N5=(C+A)-(S2+S4), N6=E'S1
N7=E-S3, N8=E-S4, N9=E-S2
and

V1 =N1 +N2, v, =N1 +N3.

where £ = 4 + B + C + D. Note that (B-7) requires nine (4X4) matrix multiplications. Observe that V; fori=1,2,...,9 in (B-6)
can all be put in the form,

b, Yoyt yd gt a,
b, Yyt a,
= (B-8)
3 4 5 6
b, Y Y T Y ay
4 S 6 7
b, YrY Yoy a,
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To compute (B-8), write it as

Fo J K E, v +v,
= = (B-9)
F, K L E, U +U,
where U, = (E, +E)-K,U,=(J+K) - E, U, =(L +K) - E are three (2X2) matrix multiplications.
The matrix U, in (B-9) is given by the relationship
u, 73 74 a, +a3
Ul = =
u, y 7s A, ta,
(@, +a, +a, +a,) " Y+ Y @ tay)
@ +a,+a,+a) v+ +7v0) @ +ay)
The matrices U, and U in (B-9) can also be obtained in a similar manner.
Now, let
M =~*+(@ +a, +ta, +a,) M =@ +a)- (@ +7");
1 1 %2 T %3 7 % 2 1 %3 :
M, = * +v% - (a, ta,), M, = Y ++% - (a, +a,);
M, =(y* +9%) « (g, +a,), M, =( +7° + v ra; (B-10)
M=+ + @+ ca, M=+ 47 448 ag;
M9=(‘y4+'y6 +7° +‘y7)°a1.
Thus,
by =M, +M, + M, + M, by =M, +M;+M, +M;
(B-11)
=M +M, +M, + M, b,=M +M,+M +M,

From (B-11), the total number of multiplications needed to perform (B-8) is 9.

To compute N, for i = 1,2,3,4.5, defined in (B-7), the same procedure can be used that was used above for (B-8). The number
of multiplications for comparing each of these M sis 9. To compute V, fori=6,7,8,9, for example, consider N, = E- S,
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n 78 +72 +79 +715’ 76 +710+7l 1+77 , 713+716+74 +71 , 7l4+712+73 +75 a

n2 76 +710+71 1+77 , ,71 3+7l6+74 +,71 , 714+712+73 +7S , 72 +79 +71 5+78 al s

N6 = = (B-12)
I’l3 71 3+716+74 +7l , 714+712+73 +75 , 72 +79 +71 5+78 , ,Yl 0+71 1+77 +76 ll7
}14 714+71 2+73 +75 , 72 +79 +,Yl 5+78 , 710+71 1+77 +76 , 7l6+74 +7l +71 3 al

By a procedure similar to that used to compute the cyclic matrix defined in (B-8), one obtains
M=y 21 40y @y ta Ha, ta);
My=(r2 + 904yt ey a2 4 4%y s @) +a);
My=(7 4y 4 40 2 97 4915 408 (g, +a);
M4=(76+710+711 +77+714+712+73+75)~(a3+a15);
M5=(714+7'2+73+75+71° + 41l 44T 440y (‘13+a15);
M6=(78+72+79+715+76+710+711 + 413 4416 4% 4yl +714+712+73+75)-a3;
M7=(76+710+711+77+713+716+74+71 +714+712+73+715+72+79 +91° +78)-a3;
M8=(713+716+74+71 % g 243 S g2 g% 15 8 10 1 +77+76)_a3;
M9=(714+712+73+75+72+79+715+78+710+711+77+76+716+74+71+713).a3;
and
n1=M1+M2+M4+M6, n2=M1+M3+M4+M7;
ng=M +M,+M +M, n,=M +M, +M, +M,

Now, factor x'7 - 1 into a product of irreducible polynomials, i.e., x!7 - 1 = (x - 1). (x® +x7 +x® +x* +x2 +x + 1) *

(x® + x5 + x* + x3 + 1). If one chooses y such that 7 satisfies x + x7 + x® + x4 + x2 + x + 1, then, by Theorem 2 and Theorem 3,
YO+ 0 4yt T 41 12 493 495 and 1P + 412 + 43 + 95 + 410 + 41 447 + 46 are equal to zero and v + 410 +
Pt y7 + 415 116 4 0% gl 4418 4 412 4 43 445 + 92 + 4% + 415 + 48 = 1. These identities are used to reduce the M,’s;
e.g., M, = 0, etc. After this reduction it can be shown that the total number of multiplications needed to perform (B-12) is 7,
including multiplications by v°. If multiplications by v° are excluded, evidently only 3 multiplications are actually needed.
In a similar fashion, matrices N, N, and N in (B-7) can be computed. After combining the above results, it is seen that the
total number of multiplications needed to perform a 17-point transform over GF(2") is 5 X 9 + 4 X 3 = 57, excluding
multiplications by v°. To include multiplications by v°, the total number of multiplicationsis 5X 9+4 X 7+ 1 =74,
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Table 1. The complexity of transform over GF(2") for n = 4,5,6,8

_an Factors . No. Mult. of Gentleman’s Algorithm
N=2"-1 N  N.. N No. Mult. of New Algorithm NV +N_+.. +N -k +1)
1 2 k 1 2 k
24—1 3x5 4x5=20 15(3+5 -1)=10S5
251 31 120 961
26—1 7X9 12X 12= 144 63(7+9~1)=94S5
28—1 IXS5x17 4% 10X 57=2280 255(3+5+17-2)=5865
Table 2. The complexity of decoding RS of 27—1 points for n = 4,5,6,8
Factors . No. Mult. of Gentleman’s Algorithm No. Mult. of Standard Algorithm
N Nl’Nz""’Nk No. Mult. of New Algorithm 2N(N1+N2+...+Nk—k+1) (N—l)(d—1)+t2
15 3x5 2% 20 =40 2 X 105 = 210 14x8+4%=128
31 31 2x 120 = 240 2x 961 =1922 30 X 16+ 8% = 544
63 7X9 2X 132=1264 2 X 945=1890 62 X 30+152=2085

255 3IxS5x17

2 X 2280 =4560

2 X 5862=11724

254 % 32 +16% = 8384




